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I. INTRODUCTION

This report presents a summary of the first year of research on
nonlinear aspects of hypersonic panel flutter. The research was carried
out under NASA Grant NGR 05-020-102, monitored technically by the Nonsteady

Phenomena Branch of Ames Research Center.

The work is summarized in three principal categories. First, the
full three-dimensional equations of elasticity are derived, and simplified
versions of these equations are presented for different levels of approxima-
tion. The sections dealing with these equations are essentially a synthesis
of the tensor derivations of Ref. 1 and the successive approximations given
in Ref. 2, with the exception of the treatment of the stress tensor. It is
felt that including such derivations in this report will aid both in Just-
ifying a number of assumptions made in the derivation of the panel-flutter
equations and in illustrating the relationships between panel-flutter theory
and the more general three-dimensional theory. Secondly, a level of approx-
imation suitable for problems in panel flutter is chosen, and panel-flutter
equations are derived with the aid of a variational formulation. A system-
atic manner of obtaining higher levels of approximation for these equations
is ‘also outlined. Finally, a method of solution of these equations is
proposed and discussed. A concluding section then deals with plans for

further research.



II. STRAIN

2.1 The Strain Tensor

Denote by BO an elastic body at rest relative to a fixed rectangu-
lar Cartesian axis system; the coordinates of the body are xi(i=il,2,3).*
Then denote by 6; the coordinates of an arbitrary curvilinear coordinate
system fixed to the body. When the body is at rest, the coordinates are
related by equations of the form

Xy = % (61:65,65)
(2.1)
ei = ei(xl,XQ,XS)
The position vector of a point Po in BO is given as
RO = RO(X‘l’XQ,X‘S) or
(2.2)
Ry = Ro(6156563)
Covariant base vectors are defined for the body-fixed coordinates in
BO, as _
d
g 0
gi = a—-el- (2.3)

The contravariant base vectors are related to the covariant ones by the
equations
g g =8t (2.4)

*It will be assumed throughout this report that Latin indices take
on values of one, two, or three, and that an index that appears twice in
a term implies summation over these values, unless it is otherwise noted
or obvious. Indices that appear more than twice will not imply summation
unless the summation is explicity indicated. Also, distinction will be
made where necessary between contravariant and covariant quantities by
using respectively raised (alJ) or lowered (ajs) indices. Note in this
regard that the coordinates 64 are neither contravariant nor covariant
in themselves, although there is a difference in general between contra-
variant and covariant differentials. The position of the coordinate
index will therefore be raised or lowered as is convenient.



Finally, from the base vectors we can define the covariant and contra-

variant components of the metric tensor for BO:

€15~ &1 ° 8

(2.5)

gtd = gl . gl
Then we denote by B the deformed elastic body at some instant of
time, whose coordinates in the Cartesian axis system are Yi. The y;

are related to the 64 by equations of the form

Y3

yi(elsegses,t)
(2.6)

6.
i

Of course, these relations along with Egs. (2.1) imply similar relations
between the x; and the y;. We assume that all of these relations are

unique, so that every point in BO or B 1is determined by unique

coordinates 6;, Xy» OF ¥i-»

The point PO in BO has now moved to P in B. For fixed time
t, we can take the first of Egs. (2.6) and obtain the Cartesian coordi-

nates of a curve through P by varying, say, 06 while holding 92 and

l’

93 constant at the values they take on at P. This curve is then the

Gl coordinate curve through P, and in similar fashion the 92 and 93

coordinate curves can be defined. Thus every point in B (or BO’ for
that matter) has three coordinate curves associated with it, as illustrated
in Fig. 2.1: N '

rY

RE P

6
2
Y2
el
Y1

Figure 2.1. Coordinate Curves through P.



By holding one coordinate constant and varying the other two for fixed
time we define coordinate surfaces through P. The coordinate surface
Gl = constant, for example, is the surface through P containing the

92 and 93 coordinate lines.

As was done for B,, we can define a pgfition vEftor §191,92,93,t),
covariant and contravariant base vectors Gi and G1, and covariant
and contravariant metric-tensor components Gi' and G1d.

A differential line element in Bo is given by

2 i..3
=g, .d .
dso € 5 6-36 (2.7)

In B this line element becomes
2 i..3
ds” = G; ;4070 : (2.8)
The covariant components of the strain tensor are then defined as

2_ 2_ _ j_j_ i3
as dsg = (Gij gij)de ag = 2€ijd9 ae
(2.9)

In this manner the metric tensor for the deformed body is given in terms

of the strain tensor and the metric tensor for the undeformed body.

The displacement vector i1s defined as

v(6,,8,,655t) = R - R, (2.10)
Thus

I . T A s

Gi=Tg=—<F+t-T=g, +—T (2.11)

Yot vt ¥t Y et
and

oy = 5T, = (B0 ) (5, + )

=g, +§V-.--_.+_g'. ov_, v, (2.12)



Hence

e, . = e g, v g, ey DI (2.13)

We write ;? in terms of its components with respect to the undeformed

body:

v=v gt (2.14)

Then we can write

ov
T , (25

where the comma denotes covariant differentiation of Vi with respect

The strain tensor thén

to 9i and the metric components of BO'

becomes
=1 (v, . +v. . +v, v .) (2.16)
i 2 1,3 Jsi s1 T,

Note in particular that the strain tensor is symmetric and is written

with reference to the undeformed body.

. . There are three other geometric gquantities that will be useful later;
these are the elongations, shears, and relative change in volume. The
elongations represent the relative changes in magnitude of line elements
along the coordinate curves. A line element along a coordinate curve

Gi in BO can be written as

-—

dsy; = é; de* (i not summed) (2.17)

with magnitude
L i ’
ds,, = (gii)2 as (2.18)

For the same elements in B, we substitute E; and Gii for g; and

gii' Then the elongations are defined as follows:



{
]

1 .
g = [asy - asg;/asy; = [(6y,)% - (gii)%]xgii)%

1 1
(G;;/8;,)2 - 1= (1 +2,/g. )% -1 (2.19)

Then let ¢ij be the angle between two differential line elements

—

ds,;, and dSOj’ and let 6¢ij be the change in this angle as the body

deforms. Then ¢ij + Swij is the angle between differential line

elements dg; and dsj in B:

1
= -2

(dsi . dsj)(dsidsj) = Gij(Giiij)

cos(z/)i(j + Swij)

1
-2

(1#3) - (2.20)

The 6¢ij are the shears; note that at any point there are only three

independent ones.

A differential volume in Bo is
1
v, = (g)2 aetap®as” (2.21)

where g is the determinant of the covariant components gij of the

metric tensor for B The differential volume for B 1is found by

O.
replacing g with G, the determinant of the Gij' Thus the relative

change in volume as a result of the deformation is

dV/dVb = (G/g)% ' (2.22)

1

Also, it can be shown * that g and G are related as follows:

G=g+ eleerSt( (2.23)

8ir855%kt T Bir skt T 3 €5 1€ 55kt
2.2 The Small-Strain Assumption
Up to now there has been no restriction imposed on the magnitude of

the deformations (elongations and shears). Such generality is rareiy

*
Number superscripts in the text denote references listed after
Chapter VIII.



necessary, however, because for the most part we are concerned with
purely elastic deformations. In particular, this is undoubtedly the

case for a fluttering plate that is not nearing its fatigue limit.
Recourse to a stress-strain diag}am for any metal commonly used in aero-
space structural applications will show that the strains below the pro-
portional limit are much smaller than unity. Therefore the first simpli-
fication will be to assume that the strains are negligible in comparison

with terms of order unity.

To illustrate the process of simplification, we choose the body-
fixed coordinate system so that it coincides with the Cartesian axis
system when the body is at rest. Then gij = gij = Sij’ and there is
no need to distinguish covariant components from contravariant components.

From Eqs. (2.19) we find that the elongations are comparable to the strains:

e, =€ (i not summed) (2.24)

Also, the angles wij are right angles, so the shears become, from
Egs. (2.20),

cos(zpij + awij) = sin Swij
(i #3) (2.25)

in 9 ~ . .= 2€, .
sin Owij 8¢1J i3

The determinant g is now unity, so with the aid of Egs. (2.22) and

(2.23) we get for the relative change in volume

' 2.26
av/av, =~ €, . (2.26)

Thus the elongations, shears, and relative change in volume are also
negligible in com@arison with terms of order unity. To this order of
approximation, an infinitesimal volume element d91d92d93 will remain
cubic during the deformation, and it will have the same volume. The
body-fixed coordinates will remein orthogonal, and the body itself is
for all practical purposes incompressible. However, the translation and
"rigid-body" rotation of the volume element are still without limitation.
The expressions for the strain components, Egs. (2.16), .can be written

in terms of the usual partial derivatives:



dv., Ov., Ov_ dv
L < i r T ) (2.27)

372\, " W, T %,

As a prelude to further simplification, we define the following

quantities:

19V 9vy
“ij = 5( 9. 5—9;) (2.28)

cos ¢y = g;*G;/(g;;6;;)

The wij characterize the average rotation of infinitesimal volume
elements, and for small strain they can be identified directly with the
rigid-body rotation of these volume elements. The angles ¢E are the
rotations of the body-fixed coordinate lines as a result of the deformation.
They are not the same as the rotations wij’ but they are comparable in
magnitude.2 Note that the eij are symmetric and the wij are anti-
symmetric with respect to the indices i and Jj, so that the eij comprise

six independent quantities at any point while the wij comprise three.

The assumption of small elongations and shears does not in itself
imply that the rotations are small. However, the simultaneous occurrence
of small elongations and shears and large rotations does imply that at
least one characteristic dimension of the body is small in relation to

the others. The obvious example of such a body is of course a thin plate.

2.3 The Assumption of Limits on the Rotations

Let us now assume some limitation on the rotations. A convenient
one is to assume that the squaresof the rotations are small relative to
terms of order unity. Under these circumstances the eij and the eij
differ by terms of the order of products of the coordinate-line rotations:2

€57 &y = O(¢&wj) | : (2.29)



Since these rotations are of the same order of magnitude as the volume-
element rotations W; 55 We view Egs. (2.29) as stating that the ¢ ;5
are of the order of the strains or of products of the volume-element
rotations, whichever are larger, and it is for the most part less
restrictive to take as larger quantities products of the rotations. We
write the strain components as

€..=e  +% (e.., ~w.)(e . -w) (2.30)

ij ij 2 ri ri’*rj rj

Then the products like e .w j are third order in the rotations, and

Yy r

products like erierj are fourth order in the rotations. Neglecting such
products in comparison with the other terms gives

€ = e -l-l

15 = %15 7 3 Yri¥y (2.51)

Finally, assuming that the rotations are of the order of the strains

gives the linear relation

= 2.32
eij € 5 ( )

In this case there is no distinction between the pre-deformation and

post-deformation geometry.



ITI. COMPATIBILITY EQUATIONS

The compatibility equations are obtained from the requirement that
the Riemann-Christoffel tensor for a Euclidean space be identically zero.
They are useful for the most part when problems in elasticity are posed
in terms of the strains or the stresses. Since problems of interest in
this report will be posed directly in terms of the displacements, the
compatibility equations will not be discussed further; their derivation

and simplification for small strains and rotations can be found in Ref.2.

10



IV. ©STRESS; THE EQUATIONS OF MOTION; BOUNDARY CONDITIONS

4.1 Stress

We assume that the body Bo is deformed to B by the action of
two types of forces: surface forces i per unit surface area of B and
body forces B per unit mass of B. The acceleration at a point in B

is denoted by 2.

The force exerted across any element of area AS in B is statically
equivalent to a force Aﬁr and a moment A@f at some point on AS. We
assume that, as AS approaches zero around the point, Aﬁ7AS approaches
zero and AEVAS has a finite limit ZZ the stress vector or traction.

This stress vector depends on two vectors — the position vector of the

point, and the unit vector normal to the area to which © refers.

We then consider a point P in B with the three coordinate curves
through it. As illustrated in Fig. 4.1, we define an elementary tetra-
hedron at P with the aid of the surfaces 6; = constant through P;
also shown are the appropriate base vectors and the corresponding

tetrahedron at Po in the unstrained body B

o:

Figure 4.1l. Elemental Tetrahedrons for Undeformed and Deformed Body.

The points Pi’ POi are located on their respective coordinate curves

an infinitesimal distance from P or PO:

11



(i not summed) ' (4.1)

The surface el = constant through P 1is the surface defined by t?e 92
and 63 coordinate curves, and its unit normal at P is E;RGll)'E, the
reciprocal or contravariant base vector divided by its magnitude. The area
of the side of the tetrahedron defined by the surface el = constant is
given vectorially as one-half the area of the parallelogram defined by

ds, and dsg, or as (dgé X dgé)/E:

245, = (45, x do.) = (G, x G.)d6°ae°
1 2 3 2 3 (4.2)
G, X G = G (@)
Thus we can say in general
— — .. —l
s, = Gi(atl) ® as; . (4.3)
where
1 .
ds, = [(GGli)2/2]dGJd9k (i not summed, i £ j # k) (4.4)
The corresponding areas dS.. and as for B_ are found by sub-

0i 0i 0
stituting the proper metric components for BO. Then we can define another

useful quantity, the ratio of the area magnitudes:

.. s s 1
as./as . = (GGll/ggll)2 (4.5)
1 0i .
Denote by 7 the unit normal to the area P1P2P3’ or dS, as illustrated
in Fig. h.l;'ﬁb is the corresponding normal for dSO. Let ?r‘be the

stress vector associated with dS and ;: These areas are related
vectorially to the other sides of the tetrahedrons as follows:
3
— —_ P _—]-'-
n ds = Z ¢t (alt)™® a8,

1=

Ul
,_l

(4 .6)

— 11
gi(e™) = a8y

nOdSO =

N

[
[
(=]

12



Then, denoting by n. and Nys the components of T and ‘Eb with

respect to base vectors E;i and E{i, w2 get the scalar relations

|
n, (G'1)2as = ds,
i i
3 (&.7)
ii =
ng; (g74)%aSy = a8y
Associated with the surfaces 63 = constant of the tetrahedron in B
are stress vectors t%i' The equation of motion for this tetrahedron
reduces to an equation of static equilibrium, because the inertia term is

of higher order in the differential limit. We find then
Tas = t.ds. (4.8)
iTi .

By substituting for dS; from the first of Egs. (4.7) we obtain
3
t = z n; (62 T (4.9)

The stress vector t associated with a surface normal n in B is in-
variant under coordinate transformation if 7 is fixed. The ni are
coVar%ant components of the unit vector T. Therefore the stress vectors
(Gii)éuga must transform according to the contravariant transformation

laws, and from them we can define the contravariant components of a stress

tensor:

L. 1

il\5 157 ’
We say then that cij is the jth contravariant component of the stress
vector (Gll)2 t; associated with the surface ei = constant. Note that

the old are referred to the deformed body B — their dimensions are force
per unit area in B, and the indices 1 and J refer to coordinatehdi—
rections in B. A more convenient formulation is obtained by basing the
stress vectors on the pre-deformation, rather than the post-deformation,
element of area. This can be achieved by recasting Eq. (¥.8) in terms of
the original areas dS, and dS,. with the aid of the second of Egs. (4.6)
and Egs. (4.5). We thereby obtain

13



3
- e O T (nplis iinE
t(ds/as,)as, = t,ds, = Z t,(66H/gg?t) 2as

0 1 = %01%0;
i=1 N
1
— Y oiind =
to = z no1(811)% o4
i=1
where

to = (as/dsy)t

1 (%.12)
— 2—.

= ii ii

It is important to understand that Egs. (4.11) still represent the
equation of motion of the tetrahedron in Bj they are merely rewritten so

that the reference area is the corresponding area in B Note, however,

0"
that the components nOi are the components of the surface normal in BO
referred to base vectors in BO. We can write the stress vector in terms
of components as before:

iiyk e ddw b.13

The relation between the s'Y and the ¢9 is deduced from Egs. (4.13),
the second of Egs. (4.12), and Egs. (%.10):

1 P s 1
sl = (c/g)? o™ (4 .14)
We can say then that le is the jth component of the stress vector
(g:ii) -Ebi referred to the surface ei = constant of the tetrahedron in

B, whose reference area, however, is the surface area of the same side of
the tetrahedron in its undeformed state. We cannot state in general that

the s'J are the componehts of a tensor.

4.2 The Equations of Motion
Let us now expand the tetrahedron so that it becomes an infinitesimal
curvilinear parallelepiped with faces ei = constant, Gl + de1 = constant,

as shown in Fig. 4.2:

1k



Figure 4.2. Elemental Parallelepiped in Deformed Body

The areas of the faces ei = constant are to first order just twice the
areas of the corresponding faces of the tetrahedron, so we have for the

forces on these faces
1 . .
— —_— o v = k
-t,ds, = —tOi(ggll)adeJdG l(i not summed, ifJ#k) (4.15)

The forces on the faces 61 + a1 = constant are given to first order by

o sk 1A N
{tOi(ggn)2 + g%; [tOi(sgll)zldelj'dejdék (i#3#k) (4.16)

The body force and inertia force of the parallelepiped are given by

i 1. o2 3

0(G)2 Bagtas®as® = po(g)2 Baelae“ae
. | . (4.17)
= = 5= 1 2 3

0(G)z Adetde"de” = po(g)2 Ade~de"de

Here we have used the equation of continuity:

i i

0(6)? = py(e)? (4.18)

Applying the force equation of motion to the parallelepiped gives

15



3
— S

> 25 Foales™2 + oole)

i=1

[N

— .;_ — ’
B - o,(e)? & (4.19)

Summing moments about some point in the parallelepiped gives the symmetry
property of the stress-tensor components:
'y .
Y= Ft (4.20)
Thus from Egqs. (4.l14) we see that the components s'Y have the same

symmetry property.

Let us now assume that the body-fixed coordinate system coincides
with the fixed Cartesian axis system when the body is undeformed. Then
the metric-tensor components become very simple, and Eq. (4.19) reduces

to the following:

o

i'—> — —
> (s*9 GJ.) + 0B = p A (k.21)
]

0

Here we have written the .Ebi in component form with the aid of Egs. (4.13).
In order to obtain the scalar form of this equation, we resolve it in terms
of the fixed base vectors E}. This is accomplished by relating the pre-
and post-deformation Cartesian coordinates to each other with the aid of

the displacement components and then by using the proper transformation

laws. The coordinates are related as follows:
vy =65+ vi(el,92,93,t) (%.22)

These equations are viewed as defining coordinate curves in B that were
parallel to the Caftesian axes in Bg. For example, we can obtain the
Cartesian coordinates in B of the line that coincided with the 6z axis
in By Dby setting 6, = 65 = O in Egs. (4.22). 1In this same sense we
can resolve the base vectors for the body-fixed coordinates in B 1n terms

of those for the Cartesian coordinates by using the appropriate transforma-

tion law:
- ays aVs - |
G, = ~——T‘*; = (as. +— ] e (4.23)
J e J g9

16



Thus Eq. (4.21) becomes

a \ ij avs — —_ —
__{ ls s .+ — g + QOB =p A (h.Qh)
8 SJ 3¢/ 8

Since the E; are fixed vectors, the scalar form of this equation is

easily written as
d i3 dvg ]
SEE [S (8sj + 553 * pOBs = pOAs (4.25)

where B and A, are components of E; and A with respect to the

fixed base vectors E;.

We then proceed to simplify these equations as was done for the
strain-displacement relations. 1In terms of the quantities eij‘ and
w; 5 Egs. (4.25) become

3

SBT [Sl‘j(ﬁs'j + e

sj " wsj)] + poB. = Ph (4.26)

The small-strain assumption (elongations and shears negligible in com-
parison with terms of order unity) does not permit any direct simplifica-
tion of E3s. (4.26), although their meaning in physical terms is consid-
erably simplified. The body-fixed coordinates in B can now be considered
orthogonal, so the equations express the equation of motion of a rectangu-
lar parallelepiped with arbitrary translation and rotation from its
original state. The components gt (or, now, sij) become indistinguish-
able from the tensor components o9 (or oij)' With the assumption that
squares of the rotations are small compared with terms of order unity,

the €sj in Egs. (4.26) become of higher order and can be neglected; we

have then
0 [s..(6 . -w )]+ B = p.A (&.27)
565 "i3'%s3 T Ysj Po ®s T Pos :

Finally, we obtain the linear equations when the rotations themselves are
assumed much smaller than terms of order unity:

Os

is
W + poBs = QOAS (ll"28)
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4.3 Boundary Conditions
At any point on the boundary where the displacements are not given,
the conditions to be satisfied express the requirement that the stress

vector at the boundary surface be equal to the surface loading — that is,

that P = t. We use Egs. (4.11) and Egs. (4.13), where now the unit
normal 'Eb is the normal to the boundary surface of BO:
3
P(dS/dSO) =Py = z nOi(g )’ oy
i=1

(.29)

It has been tacitly assumed, as before, that the most desirable form of
these equations is one where the reference areas are those in Bgy. If the
surface loading vector is given per unit area of B, then the ratio
dS/dSO is needed. This ratio depends in a complicated manner on the

elemental areas d4S the vector components Doy and the strains. It

01’
will not be written explicitly here; it is given in Ref. 2 for Cartesian

coordinates.

As was done with the equations of motion, we resolve the second of
Egs. (4.29) into components along the fixed Cartesian axes. We let POS
be the components of Po with respect to the base vectors E; and use

Egs. (4.23); this gives

iJ avs :
POS = Dy; S (BSJ. + E) (4.30)
In terms of the quantites eij and wij’ we have

P, = ny; stI(s

os +e . - wsj) (4.31)

SJ sj

The process of simplification follows closely that for the equations
of motion. The small-strain assumption permits no change in the form of
Egs. (4.31), but simplification does result because the area ratios

dsi/dSOi and dS/dSo are approximately unity. The e are neglected

sJ
when squares of the rotations are small in comparison with terms of order

unity: 18



Pog = nOisij(sSj - wsj) . (4.32)

And, finally, the linear equations are obtained when the rotations are

assumed negligibly small:

Pos = Moidis (4.33)
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V. STRESS~-STRAIN RELATIONS; STRAIN ENERGY

5.1 Stress-Strain Relations

We observed earlier that the problems of greatest interest in this
study would be those where the proportional limit of the material is not
exceeded. In other words, we consider problems that are geometrically
nonlinear but elastically linear, and for the time being we restrict
ourselves to isotropic materials. The effects of any internal dissipative
processes are neglected. The stress-strain relations are then linear,

and we can use Hooke's law:

(5.1)

sij = Kekki’ij + 2u€ij
where A and u are the Lame constants of elasticity. In terms of

Young's modulus E and Poisson's ratio v, Egs. (5.1) become

S;5 = [Ev/(l+v)(l-2v)]ekk6ij + [E/(l+v)]eij (5.2)
5.2 Strain Energy
The strain energy for an elastic body can be generally written as

follows:

| W =L[Z7ﬁ\/p€f sijdeij av (5.3)
V o

Here the innermost integral represents the strain energy per unit volume,
obtained by integrating with respect to the strain from a §tate of zero
strain to the final state of strain, represented by €p When the body

is purely elastic and the stress-strain relations are linear, this integral

can be evaluated, and the strain energy becomes

3
1 s 1 2 3
W= EM[ZY‘ ES sijeij(ggn)2 de~—d6e ae (5.4)
Vo i=1

Note that the integration is over the volume of the undeformed body.

When the body-fixed coordinate system in BO is identified with the fixed

Cartesian system, Eq. (5.4) becomes simply

1
W= Eb[Z]\sijeijdeldegdes « (5.5)

Vo
20



VI. SUMMARY OF THREE-DIMENSIONAL APPROXTMATIONS

We conclude the work in three dimensions by summarizing the levels
of approximation that have been enumerated above. There are essentially
three. One level is characterized by the assumption that the strains do
not exceed the elastic limit and are therefore negligible with respect to
quantities of order unity, with no restriction placed on the rotations.
The applicable equations are Egs. (2.30) for the strain-displacement
relations, Egs. (4.26) for the equations of motion, and Egs. (4.31) for
the boundary conditions. The second level is obtained by introducing
the additional assumption that squares of the rotations are negligible
with respect to terms of order unity. In the same order as for the first
level, the applicable equations are Egs. (2.31), Egs. (4.27), and Egs.
(4.32). The third level is given by restricting the rotations to be of
the order of strains. The applicable equations are then the linear ones:
Egs. (2.32), Egs. (4.28), and Eqs. (4.32), again in the same order as

before. The equations are grouped together in Table 1:
Table 1. Sumary of Levels of Approximation in Three Dimensions

Assumption: Small strains

. . 1
Strain-displacement: &5=%35%% (eri—wri)(erj—wrj)

1J
Egs. of motion: 2 [sij(8 +e .-w_.)] + pB. = p.A
as- * del sj s sJ 0 s 0's
cia _ i _
Stress boundary condition: Py = n,.s (SSj+esj wsj)

Assumptions: Smali strains plus small products and squares of rotations
Strain-displacement: eij = eij + 5 wriwrj

) )
Egs. of motion: 55; [sij(asj-wsj)] + poB, = pOAS

Stress boundary condition: P, = nOisiJ(asJ'wsj)
Agsumptions: Small strains and rotations

continued
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Strain-displacement: € = e

| iy}
Bsis
Egs. of motion: 35 * poBs = poAs
i
Stress boundary condition: POS = Doi84g

22




VII. PANEL-FLUTTER EQUATIONS AND BOUNDARY CONDITIONS;
METHOD OF SOLUTION

7.1 Derivation of the Euler Equations and Boundary Conditions

We now consider a thin, isotropic, initially flat plate of constant
thickness h. Let the fixed Cartesian coordinate system be located so
that the X5 axls is normal to the plate and so that the plane X3 =0
coincides with the middle surface of the plate in its unstrained state.

Then we must choose the proper level of approximation for the three-
dimensional equations. It seems clear from physical considerations that
for the purpose of this study the second or intermediate level is appro-
priate. White it is evident that significant rotations must be taken
into account, it 1s equally evident that the added complication. of
accounting for unrestricted rotations is unnecessary. This level is
reasonably consistent with the assumptions used in deriving the von Kérmén
plate equations, which have been used by some authors (Dowells, for
example) to study the panel-flutter problem. There are however additional
restrictive assumptions involved in the development of the von K&rmén
equations; these will be taken up after the equatlons appropriate to this
study have been derived.

| The next step is to approximate the displacements by expanding them
about the middle surface in powers of the lateral coordinate:

v, (6 t) = Vi(el,eg,t) + 65vi(91,62,t) + o (7.1)

i) 92} 93}

These series are truncated at two terms each, and two geometric assump-
tions are used to.write the ;i in terms of the ;i' The middle-surface
displacements vy are then the unknowns of the problem. This procedure
will be followed in the development that follows, and afterwards a process
for going on to higher approximations will be described.

The first of the geometric assumptions is the Love~Kirchhoff hypoth-
esis — that fibers normal to the middle surface before the deformation
remain normal and unextended after the deformation. We express this
13 = e33 = 0 at the

middle surface. The other assumption 1s that effects of rotation about

assumption mathematically by requiring that <-:25 = €

23



an axis normal to the plane of the plate — given by the quantity Wiy =

are negligible in comparison with effects of rotations about axes lying
in the plane of the plate — glven by the quantities w13 and m23.
Applying the second of the above assumptions to Egs. (2.31) gives

for the strains

|

2
€y = €y *wy3/2

o
€pp = €pp * Wp3/2

2 2
€55 = €53 + ()3 + wp3)/2

(7.2)
€1p = epp + ()3053)/2
13 T %13
623 = 825

We write the quantities el}’ e25, ejj’ wl}’ and Wp3 in terms of the
displacement components by using Egs. (7.1) and Egs. (2.28). We obtain

then for €13’ 623, and 653

. 535
3= vt 85 =
. 533
26,5 = vy * 5. + 6, % | (7.3)

]

A 555 6v5 ~ \2 (8?;'5 av3 A)e]
2635—2V5+H[(36—l+93851-vl> +6§E+955§;-V2

Applying the first of the aforementioned assumptions gives

e
1 Gl
3o
.2
2 53; continued
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~ v, |2 v, |2
"3“%[(5%) *(32‘2)]

and this in turn gives for the strains

- - o
. =3vl+l(3v5)2_6 5v5
11 65; 5 Ee‘:'L' 389_2

1

>v 3v. 2 3°%

2 1 3 3
€ =35 * 5 - 85 —~ (7.5)
o) Wg 2(@) 3562

- - - - o_

. _}-(avl+52+5v35v3_26 BVB )
12~ 3 Wg Wl 65{65; 55_59_91 5
€13 = €p3 = €33 = O

In obtaining Egs. (7.5) we have neglected other nonlinear terms by meking
further use of the assumption that products of the rotations w15 and
Wo3 are negligible with respect to terms of order unity. Also, the terms
left over in 613, 623, and 635 are seen to be of higher order, so
these strains are taken to be effectively zero throughout the plate.

At this point it would be possible to go back to the appropriate
equations of equilibrium and boundary conditions and derive the proper
plate equations. We prefer however to use a variational formulation,
since this is the simplest way to assure & consistent set of equations.
The Euler equations and boundary conditions are derived from Hamilton's

principle:

t, :
f (BT-8WH+BW_)at = O (7.6)
ty

where 8T is the first variation of the kinetic energy, oW is the
first variation of the strain energy, and swe is the virtual work done

by conservative or nonconservative applied loads. The variations are

25



taken with respect to the displacements, which are the principal unknowns
of the problem.

The kinetic energy is written as follows:

ff[po(v + v )de c162c16>3 (7.7)

where VO denotes the volume of the undeformed body. The velocity

components are written in terms of middle-surface velocity components

with the aid of Egqs. (7.1) end Egs. (7.4). After again neglecting higher-

order terms and then integrating with respect to 63, we find

v 3, 297
ffpo{h<v+v 3>+12[<35§) r(52) |} aegas, (1.0

2

Here the integration is taken over the planform area of the plate, denoted
by SO. The first variation is then

8T =L/i/hpo {;(Vlﬁvl + vpdvy + v36v3)
So

3 = a; a.'. a;
+ %[&% S(E?) * % 5(352-)]} 46,46, (7.9)

The terms multiplied by h:

are then integrated by parts with respect
to 6, and 9

1 by using Green's theorem in the plane:
+ de.dae f[ 8v,d60. 4
EE) 1972 7 59 92) 377172
ov ov .
3 3 =
C
0
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where CO is the curve bounding SO' The contour integration is re-
written in terms of a tangent coordinate, s, positive counterclockwise,
and a normal coordinate, n, positive outward. The variation of the

kinetic energy thus becomes

oL o
3 v Vs ) Vi, o-
8T = ffpo [h(VlSV + v 8V2 + VBSVB) - ?<862 + g?—) 8v5]d91d92
1 2
3
h
Ef"o?%sv ds (7.11)
%o

Finally, the variation is integrated with respect to time. A further
partlel integration with respect to time is performed, thereby giving

the final form:

t2 t2
f 8Tat = f { f f PO [-h( v16v1+v28v2+v38v3)
5y 1 %

5o - ;
+E( = + 2)6v3]d6 a8, —§f ds}dt (7.12)
691 892 o

It has been assumed, as ususl, that the variations are zero at +t, and

1
t,. Note also that the displacement boundary conditions are taken into

aicount by requiring that the virtual displacements be consistent with
the physical constraints of the problem; this means in particular that
the virtual displacements must be zero at any point where the displace-
ments are specified. The expression in braces in the right-hand side
of Eq. (7.12) will be used for 8T.

We take Egs. (7.5) and insert them in Eg. (5.5) in order to obtain
the strain energy in terms of stresses and displacements. We then
calculate the variation of the strain energy, recalling -that the stresses

also depend on the displacements; we find
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.2 > 2 35

v. v v ;v v
SO S ST
&, ¥, Iy, 32‘ s
+ 5128('5% + 69 ae % - 263 W}} a0, 36,46, (7.13)

Integrating with respect to 93, we find

N TR T 52;5 Fy 152
o = 'z'f f {Nlls[BUI * '5(851) ]' M116<a'e_2 )+ Nees’[sé; * E(Bb;) ]
So 1
%5 5. Ov. &, ov 7. o
3 1 2 3 °V3 3
- o] + N. .8 + + -2 e} d6. ae
Moo <ae§ )+ M (3@; 35, &Isrg) o (55;3@;)} 1%
(7.14)
where
h/2
~h/2
(1,3 = 1,2) (7.15)
h/2
M5 ;f 93814393
-h/2

As was done for the kinetic energy, we integrate by parts, rewriting

the line integrals around the edges of the plate in terms of the tangential

and normal coordinates & and n. The Nij and MiJ are resolved in
the tangential and normel directions, as are the in-plane displacements
;1 and v We have then

W = ff{ 12)5 (aTN.fE aljw%e-)

continued
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2 2
d M ) S
2 Méz:] - , _ -
92 Svi} delde2 +k/P [Nnnavn + anavs
2

+ 2 +
36,38 3

v v M oM 8(663)
brg - M ——— ]ds (7.16)

where Nnn and Mhn are the integrated plate stresses referred to the

normal to the edge of the plate, and an and Mﬁs are the plate stresses

referred to the tangent to the edge; normal and tangential edge dis-

placements at the middle surface are given by ;n and ;s’ respectively.
For the calculation of SWe, the virtual work of the external

forces, we assume that the surface loads per unit area are given by the

components f which represent the proper generalized forces associated

i,
with the virtual displacements Svi. The virtual work can therefore be

written simply as
B =k/i/ﬂ(f15vi)ds (7.17)
!
5o

where by ‘Sé we mean the total surface area of the plate — top, bottom,

and edges. Separating the integration around the edges from the rest,

we obtain
W, =J[Jff16vid91d32 +1/h/Pf15vid91d92
S S
= 9:-
0 05 h/2 0 3 h/2
h/2 8
+f\/h £,6v,d6;ds (7.18)
Co-h/2
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As vefore, Egqs. (7.1) and Eqs. (7.4) are used to write the displacements

in terms of middle-surface displacements, and the integrand of Eq. (7.18)
becomes

— — a_
fyvy = f1[6"1 - 938(353)] ¥ f2[5 2~ 938<3;§)]
- v ov. v v
+ 25 {ENB - 65[353 8(3§i> + 352 5(552)]i} (7.29)

We then define surface loads referred to SO

Fy = fi| + fil
93=h/2 63=-h/2
(7.20)
m, = (93f1)| + (93fi)l
65=h/2 65=-h/2
and edge loads on CO
M h/2
Fi = fide5
-h/2
(7.21)
« ~ ph/2
m =\/n 93f1d93
-h/2

With these definitions and Eq. (7.19) we return to Eq. (7.18) and inte-
grate by parts the terms in the area integral involving variations of
derivatives (or derivatives of variations). The contour integral thereby
obtained is combined with the original one, and the resulting integral

is rewritten in terms of the normsl and tangential coordinates n and

8. We thus find the final form for the virtuasl work SWe:
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oW ={f{F157 * Fpbv [F3+ael+aee+agl‘(m3 39%)
0
+ Bg; mg ;;i ]Sv } dGldG +\/ﬁ {% Bv + F 5V
o v Bv
[ (0 2)-m mﬁ-]m
(e 22) E Y,

The three varlations can now be combined.

coefficients of each of the variations, we have

8

3 0m 2=
oN ON o pA~h v v
22 12 - 0 3 3
(poh"z”&;— W’*F )5" ["’ s + 73 (692 * 32 )
1 o
v v T N,
9 5 5V, D 3 3 M
N
+ o (32 Mo 322) * 3 (Moo 3 * o 6§1>+ae§
P, M, 5 a;r'}\ - 5 ]_}
+ 2 + + Fg + + + + 8. d6.d6
R ggz(mlnggz, E;(m?mSE@) 3
3 = -
p-h ov. ov
o [ 5,0 Crgn) 5, [ B 52, 52
%
v M oM v om 5
3 ns nn 3 * s O [ * '3 -
R e i SRR A A e 1| &')Jf’"
ov vy N
* (Mhn i —35) 8(33- )} ds (7.23)

After grouping the

(7.22)



For Hamilton's principle to be satisfied, we require that the area
integral and the contour integral be separately zero. Furthermore, since
the variations are independent, we require that the coefficient of each
variation be zero. From the area integral we obtain thereby the Euler
equations of the problem:

-pth + sil —%2 + F =0
ON ON
‘poh"z*”wgg BEE'E'J'F =0
3 28 & — -
N A A L W 5 3
- + + N + N (7-24)
oz * 12(892 562,) 691(11391 123?2) ,
L0 ( v o a‘—’B) M1 ‘o Mo |, ¥
We 3@; 12 Wl 8932. 06.6 aeg

ov v
3 3
+F3+¥£(ml+m3&o-§:)+ggg(mg+m3¥§)=0

FProm the contour integral we obtain first of all the relations between

the applied loeds and the integrated plate stresses:

*
N =7
nn n
N =F
ns g
ov, -
o % V3 5
Mhs R B e (7.25)
- v v oM oM ov
% PN 8v3 8v3 BVB - - 3
F3 T % "Vt Neds " T Tt x
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We then find the quantities that must be specified at -the edge by examining
the contour integral in the expression for SWe, Eq. (7.22). Any com-
bination of loads or displacements, totaling four, must be specified; a

load or a displacement from each of the four products in the integrand

of Eq. (7.22) must be inclyded. Thus we might specify Vv , V., vs, and
v 5v ov, B 5V
3 * k% a(* 3 3 * *

] V3
T T e T3ttt ms?;)'mn' 5 52 Uyt W 3n s

or any combination of four except ones containing, say, both F: and
v, or the like.

To complete the formulation, we must determine the integrated plate
T This is
accomplished by using the stress-strain relations, Egs. (5.2), and the

stresses Nij and Mij in terms of the displacements Vv

strain-displacement relations, Eqs. (7.5). The stress-strain relations

become

(2]
\

= [E(l-v)/(l+v)(l-2v)]ell + [Ev/(l+v)(l-2v)]622

80 = [E(l-v)/(l+v)(l-2v)]622 + [Ev/(l+v)(l-2v)]€:Ll

81p = [E/(l+v)]612 (7.26)
833 = [Ev/(l+v)(l-2v)](ell+€22)

s13 = 523 =0

Even though 1t is not zero, the stress 833 does not appeér in the
equations of equilibrium or the boundary conditions. This is a result

of taking 633 spproximately zero, so that 555 does no work and there-
fore does not appear in the expression for the strain energy. Now we
substitute for the strains from Egs. (7.5) in Egs. (7.26), integrate with
respect to 6, to get the Nij’ and then mltiply by 63 and integrate

3
to get the Mij' We obtain
ov OV \2 ov, dvy 2
Eh(1-v 1,1(TyY v T2, 3]}
Nn=r—y(—l’71+v T-2v {3@;*5(5@;) +l-v[3§£+2(36—£)

continued
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v vy 2 v 3, 2
_ __Enh(1-v) 2 1(°73 v 1 1(°73
Ny = (1+v)(1-§v7{ 3, 5(3‘9‘2') *r[sa; * 5(39‘1') ]}
N, O, o, o
_ Eh | 1 2 3 3
N2 -‘(—7[@"&5;*35;?92'] (7.27)
3% v

3 v
Enh’(1l-v 3 v 3
My=- 1‘(“"32 T+ (1‘L-2v5 (aai 1 ae§>

O o
Eh3(1-v) <a V3+ v a"s)
1-v ae

Moo = = T5[Tm)(1-5v)

o
Eh°(1-v O

Mo = = 15[ )(1-57 36,38,

Using these relations in Egs. (7.24) allows the problem to be posed
solely in terms of displacements.

Egs. (7.2&) are similar in form to those of Herrmanna, whereas Eqs.
(7.27) are not. Herrmann used the stress-displacement relations of wvon
Kérmén plate theory, where the stress 333 ig in effect taken as zero
while the strain 633 is not. In other respects, the remarks in Ref.

5 apply here — there are terms that represent the effect of rotatory
inertia, and in the absence of inertia terms Egs. (7.24) would also

reduce to the corresponding ones for the von Kﬁfmén theory.

7.2 Method of So;ution

In order to obtain solutlons to these equations, we return to
Hamilton's principle and use & generalization of the Ritz method for
dynamic systems. We take the strain energy as given by Eq. (7.1k4) and
rewrite it in terms of the displacements alone with the aid of Egs.
(7.27). We can say then that the kinetic energy and the strain energy
depend on the displacements and their derivatives as follows*

T'dl’ )

a continued
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o (i =1,2,5;0,B = 1)2) (728)
v 5
- 66& s Ee'a'?e’ﬁ

For the virtual work of the external forces, we rewrite Eq. (7.22) in a

more compact form as
&, =\/1/H(F16vl + F v, + F55v3)d61d62
S0

N [ X - * —% — —% (8;3)]
JF Fh&vn + FssvB + F38v3 - m 8l—5>)|ds (7.29)

o

with the simplification in notation being easily discerned by comparison

of this equation with Eq. (7.22). The displacements are then represented
as follows:

v,(6,,6,,t) = i 2, (£)¥,,(6,)0,,(6,) (7.30)
k=0

The trial functions Yik and Qik are chosen so that they form a com-
plete set of orthogonal functions that satisfy (at least) the geometric
boundary conditions. TFor example, one might choose as trial functions

for a slmply supported rectangular plate functions of the form

kﬂel
wik(el) = sin 71—-' (7.31)

where £, 1is the dimension of the plate in the 6, direction; for a

1 1
clamped rectangular plate one could use
anel _
=1 - .32
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The amplitude functions aik thus become the unknowns. Note that the

displacements ;L and ;s are linear functions of ;l and Vé, being

given as sums of products of ;1 and ;é with the proper direction
cosines. We can therefore write the variations Svn and Svs in terms
of B, &and Ba, . The same situation obtains &s well for BVE/Bn,
since it can be written in terms of 875/591 and 573/562. When the
expressions given in Egs. (7-30) are substituted for the displacements

in the kinetic-energy and strain-energy expressions, the dependence on

the new unknowns 84y becomes simply
T = T(éik)
W= W(aik) . (7-33)

For the virtual work SWe, we find
00
B * * - —% —
W, = z [(Fmﬂ?lk)aalk + (F2k+F2k)5a2k + (F§k + Fzy - mnk)aaﬁk]
k=0 (7.34)

The unstarred coefficients of the variations in this expression come from

the area integral in Eq. (7.29), and are given by expressions like
Fly = f f F ¥, 0,,86.46, (7.35)
S0

whereas the starred coefficients are derived from the contour integral

in Eq. (7.29) and are given by expressions like

»* *
F;k =\/“[Fn cos (Gl,n) + F cos (Gl,s)]Ylk¢lkds (7.36)

o

The direction cosines cos (Gl,n) and cos (Gl,s) are those of the
undeformed plate, so cos (Gl,n), for example, is the cosine of the

angle between the Gl(Xl) axis and the pre-deformation edge normal.
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We then rewrite Hamilton's principle as

t 2]
2 oT . oT . aT . oW OW
‘ Z [Bé Salk * 34 8&21{ + N Sa5k - 5alk 8alk - 3a2k 8a2k
1 k=0 1k 2k 3k
OW e + N * ) * e ]
" Say sk (FpytFpp)Bay, + (Fpy Py ey, + (Fyp#Fs, - x )88y [at = O

(7.37)

Terms involving the kinetic energy are integrated by parts, with variations
at times tl and t2 assumed zero. This gives

t ) o0
j;le 1;) {[— a%(a::k) - BSWE + Flk+F;k]8alk

O ( T oW * ]
+ |- - + F. +F. |Ba
[ Bf(aégk) Ja, 2k 2k ]2k
d / dT oW - =% ¥ ] } _
+ [_ 3%( : ) - 3a— * ExtFymy Bag, [t =0 (7.38)
6a5k 3k

Since the variations are independent, we require that each coefficient be

separately equal to zero, thereby arriving at the sets of equations

of or \ © ow *
-Ft(aé )-aalk+Flk+Flk—O
lk .
%( BT)-GSW + By + Fyy = 0 (7.39)
aégk 2k
o or W |, = = =*
‘Eﬁ(aé )'aa3k+F3k+F3k Tk = ©
3k
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for each value of k. They are in general coupled, quasi-linear, second-
order, ordinary differential equations. The problem is thus reduced to
an initial-value problem, with the results being the plate motion as a

function of time.

7-3 Extension to Higher Approximations

We recall that in applying the Love-Kirchhoff hypothesis we assumed
that the strains 525

plate. It is therefore said that the effects of transverse shear defor-

and 613 were approximately zero throughout the
mations are neglected. If now a more accurate approximetion to the plate
problem is desired, the transverse shear deformations must be taken into
account. Therefore the Love-Kirchhoff assumption is dropped. Series
expansions for the displacements as in Egs. (7.1) are assumed, &and for
the first approximetion the series are truncated at two terms. Now,
however, the linear terms in 63 are no longer given as functions of the
middle-surface terms. The number of unknowns is doubled — from three

t0 six -- and a varistional formulation as illustrated in Section 7.1
will give six plate equations and the proper boundary conditions to go
with them. This formulation has been discussed by Habipu. In principle,
it can be extended indefinitely simply by taking more and more terms in
the series expansions for the displacements, although as a practical
matter there seems to be very little justification for taking transverse
shear defqrmations into account, at least for isotropic plates of thick-

nesses of interest in this study.
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VIII. CONCLUDING REMARKS

Further research activity has been divided into three areas of
investigation, as outlined below:

(l) The first case chosen for detailed analysis is the one con-
sidered by Dowells, who applied the Galerkin method to the von Kfrmén
plate equations with first-order piston-theory aerodynamic loads. It is
expected that a comparison of his results with those obtained from
variational considerations (as outlined in Section VII) will help to
clarify the relationships between the two approaches. Of particular
interest is the effect of the boundary conditions on these relationships.
This case will also provide a convenient means for assessing the influence
of additional noniinearities, such as aerodynamic nonlinearitie;, on
stabllity and the behavior of the limit cycle. As this comparison nears
completion, a new case will be chosen for detailed analysis. The theoreti-
cal model will simulate as closely as possible an experimental model, with
the aim being to eliminate or explain any differences between experimental

6,7,8 ar

and theoretical results. Results from & number of experiments e
presently under consideration.

(2) Some less complex but very interesting problems, such &as a
beam with a follower force at one end and a Timoshenko beam, are being
treated with the variational approach and the Galerkin method. Since
there are for the most part exact solutions to these problems, it is
expected that some enlightening and very general results will be obtained
to be used as guidelines in the application of the variational approach
and the Galerkin method to panel-flutter problems in general.

(3) Although the plate equations presented in this report are ex-
pected to be entirely adequate for the problems that will be considered,
some further thought wili be given to their development. There are very
general theories for plates and shells, such as that of Koiter9, but none
of them appear to be suitable for problems of interest in this study.

On the other hand, the possibility of using the plate thickness as a small
parameter in an expansion scheme has been explored by a number of authors
(Eringenlo, for example), and it appears that such a scheme would be most

useful in providing a rational analytic means 6f assessing the relative
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import of such effects as rotatory inertia and transverse shear defor-
mations along with the geometric nonlinearities that arise when finite

rotations are considered.
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